688 research outputs found

    Reasoning and planning in dynamic domains: An experiment with a mobile robot

    Get PDF
    Progress made toward having an autonomous mobile robot reason and plan complex tasks in real-world environments is described. To cope with the dynamic and uncertain nature of the world, researchers use a highly reactive system to which is attributed attitudes of belief, desire, and intention. Because these attitudes are explicitly represented, they can be manipulated and reasoned about, resulting in complex goal-directed and reflective behaviors. Unlike most planning systems, the plans or intentions formed by the system need only be partly elaborated before it decides to act. This allows the system to avoid overly strong expectations about the environment, overly constrained plans of action, and other forms of over-commitment common to previous planners. In addition, the system is continuously reactive and has the ability to change its goals and intentions as situations warrant. Thus, while the system architecture allows for reasoning about means and ends in much the same way as traditional planners, it also posseses the reactivity required for survival in complex real-world domains. The system was tested using SRI's autonomous robot (Flakey) in a scenario involving navigation and the performance of an emergency task in a space station scenario

    Estimating input parameters from intracellular recordings in the Feller neuronal model

    Get PDF
    We study the estimation of the input parameters in a Feller neuronal model from a trajectory of the membrane potential sampled at discrete times. These input parameters are identified with the drift and the infinitesimal variance of the underlying stochastic diffusion process with multiplicative noise. The state space of the process is restricted from below by an inaccessible boundary. Further, the model is characterized by the presence of an absorbing threshold, the first hitting of which determines the length of each trajectory and which constrains the state space from above. We compare, both in the presence and in the absence of the absorbing threshold, the efficiency of different known estimators. In addition, we propose an estimator for the drift term, which is proved to be more efficient than the others, at least in the explored range of the parameters. The presence of the threshold makes the estimates of the drift term biased, and two methods to correct it are proposed

    Phase locking below rate threshold in noisy model neurons

    Get PDF
    The property of a neuron to phase-lock to an oscillatory stimulus before adapting its spike rate to the stimulus frequency plays an important role for the auditory system. We investigate under which conditions neurons exhibit this phase locking below rate threshold. To this end, we simulate neurons employing the widely used leaky integrate-and-fire (LIF) model. Tuning parameters, we can arrange either an irregular spontaneous or a tonic spiking mode. When the neuron is stimulated in both modes, a significant rise of vector strength prior to a noticeable change of the spike rate can be observed. Combining analytic reasoning with numerical simulations, we trace this observation back to a modulation of interspike intervals, which itself requires spikes to be only loosely coupled. We test the limits of this conception by simulating an LIF model with threshold fatigue, which generates pronounced anticorrelations between subsequent interspike intervals. In addition we evaluate the LIF response for harmonic stimuli of various frequencies and discuss the extension to more complex stimuli. It seems that phase locking below rate threshold occurs generically for all zero mean stimuli. Finally, we discuss our findings in the context of stimulus detection

    Development of an Expert System for Representing Procedural Knowledge

    Get PDF
    A high level of automation is of paramount importance in most space operations. It is critical for unmanned missions and greatly increases the effectiveness of manned missions. However, although many functions can be automated by using advanced engineering techniques, others require complex reasoning, sensing, and manipulatory capabilities that go beyond this technology. Automation of fault diagnosis and malfunction handling is a case in point. The military have long been interested in this problem, and have developed automatic test equipment to aid in the maintenance of complex military hardware. These systems are all based on conventional software and engineering techniques. However, the effectiveness of such test equipment is severely limited. The equipment is inflexible and unresponsive to the skill level of the technicians using it. The diagnostic procedures cannot be matched to the exigencies of the current situation nor can they cope with reconfiguration or modification of the items under test. The diagnosis cannot be guided by useful advice from technicians and, when a fault cannot be isolated, no explanation is given as to the cause of failure. Because these systems perform a prescribed sequence of tests, they cannot utilize knowledge of a particular situation to focus attention on more likely trouble spots. Consequently, real-time performance is highly unsatisfactory. Furthermore, the cost of developing test software is substantial and time to maturation is excessive. Significant advances in artificial intelligence (AI) have recently led to the development of powerful and flexible reasoning systems, known as expert or knowledge-based systems. We have devised a powerful and theoretically sound scheme for representing and reasoning about procedural knowledge

    When a meta-analysis equals a single large-scale trial with meaningful follow-up

    Get PDF
    © 2021 The Author(s). Published on behalf of the European Society of Cardiology. All rights reserved. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1093/eurheartj/ehab460This commentary refers to ‘Cardiac mortality in patients randomised to elective coronary revascularisation plus medical therapy or medical therapy alone: a systematic review and meta-analysis’, by E.P. Navarese et al. doi:10.1093/ eurheartj/ehab246 and the discussion piece ‘In the pool: dilution or drowning?’, by V. Dayan et al. doi:10.1093/ eurheartj/ehab443Peer reviewe

    Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process

    Get PDF
    Stochastic leaky integrate-and-fire models are popular due to their simplicity and statistical tractability. They have been widely applied to gain understanding of the underlying mechanisms for spike timing in neurons, and have served as building blocks for more elaborate models. Especially the Ornstein–Uhlenbeck process is popular to describe the stochastic fluctuations in the membrane potential of a neuron, but also other models like the square-root model or models with a non-linear drift are sometimes applied. Data that can be described by such models have to be stationary and thus, the simple models can only be applied over short time windows. However, experimental data show varying time constants, state dependent noise, a graded firing threshold and time-inhomogeneous input. In the present study we build a jump diffusion model that incorporates these features, and introduce a firing mechanism with a state dependent intensity. In addition, we suggest statistical methods to estimate all unknown quantities and apply these to analyze turtle motoneuron membrane potentials. Finally, simulated and real data are compared and discussed. We find that a square-root diffusion describes the data much better than an Ornstein–Uhlenbeck process with constant diffusion coefficient. Further, the membrane time constant decreases with increasing depolarization, as expected from the increase in synaptic conductance. The network activity, which the neuron is exposed to, can be reasonably estimated to be a threshold version of the nerve output from the network. Moreover, the spiking characteristics are well described by a Poisson spike train with an intensity depending exponentially on the membrane potential

    Dedicated bifurcation analysis: basic principles

    Get PDF
    Over the last several years significant interest has arisen in bifurcation stenting, in particular stimulated by the European Bifurcation Club. Traditional straight vessel analysis by QCA does not satisfy the requirements for such complex morphologies anymore. To come up with practical solutions, we have developed two models, a Y-shape and a T-shape model, suitable for bifurcation QCA analysis depending on the specific anatomy of the coronary bifurcation. The principles of these models are described in this paper, as well as the results of validation studies carried out on clinical materials. It can be concluded that the accuracy, precision and applicability of these new bifurcation analyses are conform the general guidelines that have been set many years ago for conventional QCA-analyses
    corecore